> demo() Use `demo(topic)' where choices for argument `topic' are: topics [1,] "graphics" [2,] "image" [3,] "lm.glm" [4,] "glm.vr" [5,] "nlm" [6,] "recursion" [7,] "scoping" [8,] "is.things" [9,] "dyn.load" > demo("graphics") demo(graphics) ---- ???????? Typeto start :
>help(cor) cor package:base R Documentation Correlation and Covariance Matrices Description: Compute the correlation or covariance matrix of the columns of `x' and the columns of `y'. Usage: cor(x, y=x, use="all.obs") cov(x, y=x, use="all.obs") Arguments: x: a matrix or data frame. y: a matrix or data frame. use: a character string giving the method for handling missing observations. This must be one of the stringss `"all.obs"', `"complete.obs"' or `"pairwise.complete.obs"' (abbreviations are acceptable). Details: If `use' is `"all.obs"', then the presence of missing observations will cause the computation to fail. If `use' has the value `"complete.obs"' then missing values are handled by casewise deletion. Finally, if `use' has the value `"pairwise.complete.obs"' then the correlation between each pair of variables is computed using all complete pairs of observations on those variables. This can result in covariance or correlation matrices which are not positive semidefinite. See Also: `cov.wt' for weighted covariance computation. Examples:
> qdata[ 1:2 ] sei BodyWeight 2000-01 male 100.5 2000-02 female 105.4 2000-03 male 98.9 2000-04 male 116.2 2000-05 female 120.2 2000-06 female 127.4 2000-07 female 112.6 2000-08 female 109.8 2000-09 male 97.1 2000-10 male 102.3 > qdata[ qdata[1]=='female', ] sei BodyWeight AgeAtFirstEggs NumberOfEggs 2000-02 female 105.4 40.5 31.3 2000-05 female 120.2 52.5 48.4 2000-06 female 127.4 49.6 43.2 2000-07 female 112.6 45.6 39.0 2000-08 female 109.8 43.5 37.1
> sortlist <- order(qdata$BodyWeight) > sortlist [1] 9 3 1 10 2 8 7 4 5 6 > qdata2 <- qdata[sortlist, ] > qdata2 sei BodyWeight AgeAtFirstEggs NumberOfEggs 2000-09 male 97.1 NA NA 2000-03 male 98.9 NA NA 2000-01 male 100.5 NA NA 2000-10 male 102.3 NA NA 2000-02 female 105.4 40.5 31.3 2000-08 female 109.8 43.5 37.1 2000-07 female 112.6 45.6 39.0 2000-04 male 116.2 NA NA 2000-05 female 120.2 52.5 48.4 2000-06 female 127.4 49.6 43.2
attach(qdata)
> lmresult <- lm( BodyWeight ? sei ) > anova(lmresult) Analysis of Variance Table Response: BodyWeight Df Sum Sq Mean Sq F value Pr(>F) sei 1 364.82 364.82 5.4215 0.04828 * Residuals 8 538.33 67.29 --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 >
最終更新年月日 2006年4月10日
佐賀大学農学部動物生産学研究室ywada@cc.saga-u.ac.jp